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Abstract
We discuss the question of entanglement versus separability of pure quantum
states in direct product Hilbert spaces, and the relevance of the issue to physics.
Different types of separability may be possible, depending on the particular
factorization of the Hilbert space. A given orthonormal basis set for a Hilbert
space is defined to be of type (p, q) if p elements of the basis are entangled and
q are separable, relative to a given bi-partite factorization of that space. We
conjecture that not all basis types exist for a given Hilbert space.

PACS numbers: 03.65.Ud, 98.80.Qc

1. Introduction

The phenomenon of entanglement is of central importance in the interpretation of quantum
mechanics. Historically, entanglement was the focus of the famous Einstein–Podolsky–Rosen
(EPR) paper [1], which suggested that standard quantum mechanics is an incomplete theory
of physical reality. The central argument of the EPR paper was that more information about
incompatible variables such as momentum and position could in principle be deduced about
an entangled two-particle quantum state than quantum mechanics permits, effectively giving
information about each particle separately, and therefore supporting a classical perspective.

The resolution of this ‘paradox’ is the observation that information extraction in quantum
mechanics always comes at a cost: it is not possible to actually extract information about
incompatible variables from a given state without destroying the state being looked at before
the information extraction process is completed, and this invalidates the argument used by
EPR [2].

An apparently unrelated issue is the following. Throughout the history of quantum
mechanics, a constant topic of debate has been where the boundary between the classical and
quantum worlds should be. We believe that there is now sufficient evidence to support the
notion that there is no such boundary, and that the classical world view is no more than an
emergent, i.e. effective, view of a universe which is entirely quantum mechanical in origin
[3]. The evidence we cite is the near universal validity of the quantized-field approach to
elementary particles, numerous experimentally observed violations of Bell inequalities and
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galactic lensing. In the latter process, we can imagine observing (say) one photon per day
over several years to build up patterns analogous to the interference bands seen in double slit
experiments, the difference being that the scale of the process is cosmological rather than
local. In addition to these more exotic applications, the validity of quantum principles is
supported by the overwhelming success of quantum mechanics in applied physics, biology
and chemistry, on both terrestrial and astrophysical scales.

2. Separability and factorization

With a recognition that the semi-classical observers of standard quantum mechanics should
ideally be regarded as quantum systems themselves, it has become more fashionable to extend
the quantum description to include them with the systems under observation. This can be done
whilst maintaining a semi-classical perspective by writing a quantum state vector � for an OS
(combined observer plus system under observation) as a direct product � ≡ θ ⊗ φ, where θ

represents a state of the observer O and φ represents a state of the system S under observation.
Such a state will be called separable. In general, we shall use the word separable when we
talk about states constructed from direct products of vectors, and factorizable when we refer
to Hilbert spaces constructed from direct (tensor) products of (factor) Hilbert spaces. When
applied to Hilbert spaces, the term separable refers to the possibility of finding a countable
basis for it, regardless of any issue of factorizability.

When the dimensions of realistic Hilbert spaces which might model the universe are
considered, then the a priori probability that a state chosen at random in such a space be
separable is zero, as will be seen from our discussion of concurrency below. The observed
separability of the universe into vast numbers of identifiably distinct subsystems is surprising
from this point of view. However, this does not take into account the crucial role of dynamics,
which imposes very specific constraints on which states are physically accessible in the course
of time. For example, suppose all the possible outcomes of some quantum process are
separable states. Then there will be zero probability of getting an entangled state outcome in
that process.

In this article, classicity (or classicality) is regarded as synonymous with the possibility of
making distinctions between different objects, such as different spatial positions, or physical
subsystems. In quantum mechanics, entanglement may be regarded as a breakdown of such a
possibility. When physicists discuss isolated systems within a wider universe, they invariably
model the totality by separable states,with some of the factors representing states of the isolated
systems and other factors representing the rest of the universe. The conventional procedure is
then to ignore these other factors (the environment), and discuss only those factors representing
the isolated systems. Certainly, it seems impossible to discuss experiments in physics without
assuming that the states of interest are factored out from the rest of the environment. The
development of decoherence theory has not altered this in the least. Separability is therefore
as fundamental to quantum physics as entanglement.

This leads to the following question: given a finite-dimensional Hilbert space H of
dimension d ≡ dimH, when is it possible to think of a state � in H as a separable state? By
this we mean we would like to know the circumstances which guarantee that � is a tensor
product of the form � = ψ ⊗ φ, where ψ is some vector in some factor space H1 of H and φ

is another vector in another factor H2 of H.
Let H be a finite-dimensional Hilbert space of dimension dimH. If H can be expressed

in the bi-partite form

H = H(d1)
1 ⊗ H(d2)

2 (1)



Factorization and entanglement in quantum systems 519

where H(di )
i , i = 1, 2 is a Hilbert space with dimension di, then we shall say that H is

factorizable. Clearly dimH must itself be factorizable and given by the rule dimH = d1d2.

3. Cosmological implications

This elementary result may have important cosmological implications. According to a number
of authors [3–6] the universe is described by a time-dependent pure quantum state � , an
element in a Hilbert space HU of enormous but finite dimension. We note that the notion that
the universe is a quantum system has been criticized principally on the grounds that there is no
evidence that all physical systems must possess quantum states [7], and also because it appears
inconsistent to discuss probabilities when there is only one universe. These arguments can be
met with three counter-arguments: first, the absence of any boundary between the quantum and
classical worlds and the empirical validity of quantum mechanics actually strongly support
the notion that all systems must run on quantum principles, and so by extension does the
universe; second, a pure state formalism eliminates the need for a density matrix approach to
quantum cosmology; third, quantum probabilities make sense if they are interpreted correctly
in terms of predictions about the possible future state of the universe made by physicists who
are themselves part of the quantum universe. This is not inconsistent with the notion that the
universe is in a definite state at present.

Given this quantum perspective about the universe, the apparently overwhelmingly
classical appearance of the universe, with a classical looking spatial structure which permits
the separation of vast numbers of subsystems of the universe spatially, is interpreted by us as
evidence that the current state of the universe � has separated into a vast number of factors.
If this is true then HU must be factorizable into a vast number of factor spaces, and, therefore,
dimHU itself must be highly factorizable. In particular, the Hilbert space of the universe
cannot have prime dimension according to this scenario.

4. Factorizable Hilbert spaces

Hilbert spaces with a high degree of factorizability are readily constructed. Recent
approaches to fundamental physics inspired by spin networks and quantum computation
[5, 8] consider HU to be the direct product of a (usually vast) number N of qubit Hilbert
spaces, namely

HU = H(2)
1 ⊗ H(2)

2 ⊗ · · · ⊗ H(2)
N (2)

and then dimHU = 2N. None of the individual qubit factor spaces H(2)
i is factorizable, so

that (2) represents a complete, or maximal, factorization of HU . We shall call such a qubit
factorization a primordial factorization. In the most general case, a primordial factorization
will be of the form

H = H(p1)

1 ⊗ H(p2)

2 ⊗ · · · ⊗ H(pN )

N (3)

where the pi are prime numbers and dimH = p1p2 · · · pN . If the factorizability ζ of H is
defined as the ratio N/ dimH then qubits provide the maximum factorizability for a given
N, i.e. ζ = N/2N . Qubits are favoured by various authors because they represent the most
elementary attributes of logic, that is, ‘yes’ and ‘no’ (or equivalently, ‘true’ and ‘false’) can
be identified with the two elements of a qubit ‘spin-up’, ‘spin-down’ basis.

Given an N-qubit system with N > 2 then it is possible to consider partial factorizations
with splits of H of the form

H = H(2n) ⊗ H(2N−n) (4)
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where

H(2n) ≡ H(2)
1 ⊗ H(2)

2 ⊗ · · · ⊗ H(2)
n

(5)
H(2N−n) ≡ H(2)

n+1 ⊗ H(2)
n+2 ⊗ · · · ⊗ H(2)

N

and variants of this theme. If a given partial factorization has two factors, such as in (4) we
shall call this a bi-partite factorization.

5. Separability of states

We now discuss a necessary and sufficient condition for the separability of a state relative to
a given bi-partite factorization.

Let B(da)
a ≡ {|i〉a : i = 1, . . . , da} be an orthonormal basis for factor space H(da)

a .

Orthonormality is not necessary for our theorem below to hold but is useful in subsequent
discussions. Given that H is factorizable in the form (1) then an orthonormal basis for H
is B ≡ {|i〉1 ⊗ |j 〉2 : i = 1, 2, . . . , d1, j = 1, 2, . . . , d2}. Such a basis will be called a
factorizable basis. Any state |�〉 in H can then be written in the form

|�〉 =
d1∑

i=1

d2∑
j=1

Cij |i〉1 ⊗ |j 〉2 (6)

where the coefficients Cij are complex and form the components of a complex d1 × d2 matrix
called the coefficient matrix. It is relatively easy to prove the following theorem:

Theorem. The state |�〉 is separable relative to the factorizable basis B if and only if the
coefficient matrix satisfies the micro-singularity condition

CijCab = CibCaj (7)

for all possible values of the indices.

A proof involving the concept of concurrency is given in [9]. For example, a state |�〉 in
a two-qubit system of the form

|�〉 = α|1〉1 ⊗ |1〉2 + β|1〉1 ⊗ |2〉2 + γ |2〉1 ⊗ |1〉2 + δ|2〉1 ⊗ |2〉2 (8)

is separable if and only if αδ = βγ , which can be readily verified.
There are two points to make here. First, given a factorizable basis, a coefficient

matrix chosen at random will almost certainly not be micro-singular, simply because for
large dimensions, there will be a vast number of micro-singularity conditions (7) to satisfy.
The number NC of such conditions will in general be given by NC = 1

4d1(d1 −1)d2(d2 −1) ∼
1
4 dim2H for large dimH. This is why the existence of separability in a universe which is
running on quantum principles should come as a surprise. Rather than envisage entanglement
as an extraordinary phenomenon, we should perhaps ask why the degree of separability in the
current epoch of the universe is so relatively large. We envisage that, given a fully quantum
universe which was jumping from one quantum state to another, most of these states should
be entangled, unless there is some very special reason for separability. A related issue is the
idea, consistent with recent developments in quantum gravity, that space itself is an emergent
attribute of a completely quantum universe [3, 10]. It is hard to understand how this attribute
could emerge unless the states of the universe in the epoch were highly separable and remained
so under the influence of extraordinary dynamical laws. Without separability, there can be no
notion of classicity, and without any form of classicity, the concept of space itself cannot be
formulated. Position in space is, after all, synonymous with the classical statement that this
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object is here and not there. As the EPR discussion shows, such a statement is not possible for
entangled states. Moreover, from this viewpoint, the expansion of the universe may be taken as
some indicator that, far from being of very low probability, separability is actually increasing,
suggesting that the current dynamics of the universe is somehow organizing a greater degree
of classicity (or separability) with time.

To illuminate the scale of the problem of explaining the current separability of the universe,
a simple estimate of the lowest realistic dimension dU of the Hilbert space HU of the universe
gives dU � 210180

, which is based on the supposition that each Planck volume in the visible
universe contains one elementary qubit. More realistic estimates would certainly increase this
estimate dramatically. The set of separable states in Hu is a set of measure zero, with the
number of concurrency conditions being proportional to d2

U for large dimensions. We should
ask, therefore, why does the universe have so much apparent separability, that is, why can
physicists investigate isolated systems at all?

The second point is that separability depends on the choice (if any) of the factorization
of the total Hilbert space H. Consider the Hilbert space H ≡ H(2)

1 ⊗ H(2)
2 ⊗ H(2)

3 where each
H(2)

i represents a qubit space. Now rearrange H in the bi-partite form

H = H(4)
A ⊗ H(2)

3 (9)

where H(4)
A ≡ H(2)

1 ⊗ H(2)
2 , with factorizable basis

B1 ≡ {|ij 〉A ⊗ |k〉3 : 1 � i, j, k � 2}. (10)

Then a separable state |�〉 relative to this factorization and this basis will be of the form

|�〉 = (a|11〉A + b|12〉A + c|21〉A + d|22〉A) ⊗ (α|1〉3 + β|2〉3) (11)

where the coefficients a, b, . . . , β are complex, giving the coefficient matrix

⊗ 13 23

11A aα aβ

12A bα bβ

21A cα cβ

22A dα dβ

(12)

which clearly satisfies micro-singularity. In this matrix, the top row and the left-most column
label basis vectors for the different factor spaces, and the other terms represent the coefficients
of their tensor products, i.e. the actual elements of the coefficient matrix.

Now we may also write the Hilbert space in the alternative bi-partite form

H = H(2)

1 ⊗ H(4)
B (13)

where H(4)
B ≡ H(2)

2 ⊗ H(2)

3 . We note for example

|12〉A ⊗ |1〉3 = |1〉1 ⊗ |21〉B (14)

and so on. Then the above state is given by

|�〉 = aα|1〉1 ⊗ |11〉B + aβ|1〉1 ⊗ |12〉B + · · · (15)

giving the alternative coefficient matrix

⊗ 11B 12B 21B 22B

11 aα aβ bα bβ

21 cα cβ dα dβ

(16)

which clearly does not satisfy micro-singularity. Therefore, a state separable relative to
one factorization of H is not necessarily separable relative to another factorization of H.
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Mathematicians tell us that separable and entangled states can be transformed into each
other via unitary transformations, whereas physicists regard their differences as physically
significant in the right context.

Apart from having consequences for the question of separability on emergent scales, this
may have another cosmological implication. Given that the separability of the state of the
universe is meaningful only relative to a special factorization of H, this suggests that there is
a preferred basis for H before each jump. If the universe can jump only into an eigenstate
of some specific complete set of observables [3], then that preferred basis will be the set of
possible eigenstates (i.e. the possible outcomes) of that complete set of observables. This
complete set may change with each jump, but nevertheless this picture must still hold. There
must be something extraordinarily special about the selection of this set of operators. There
must be something extraordinarily special about the selection of this set of observables. In a
fully quantized universe running as a quantum automaton, this choice cannot be made by any
external agency. Given that the number of independent Hermitian operators is of the order
d2
H [11], then there must be some as yet unknown and very specific laws which determine the

operators responsible for the separability of the universe in the current epoch.

6. Separations and entanglements

An important feature of quantum theory is that individual elements of a factorizable space
are not in general separable relative to a primordial factorization. If ψ is an element of H(d1)

1

and φ is an element of H(d2)

2 , then � ≡ ψ ⊗ φ is a separable element of H ≡ H(d1)

1 ⊗ H(d2)

2 .
We shall say that � is separable relative to the

(
H(d1)

1 ,H(d2)

2

)
factorization of H. It is a

particularly important fact that the separability of � relative to
(
H(d1)

1 ,H(d2)
2

)
does not depend

on the choice of basis for H(d1)
1 or for H(d2)

2 , that is, this separation is invariant to (local) unitary
transformations of basis for H(d1)

1 and H(d2)
2 separately. If an element 
 of H is not separable

relative to a
(
H(d1)

1 ,H(d2)

2

)
factorization of H then we shall say that 
 is entangled relative to

the
(
H(d1)

1 ,H(d2)

2

)
factorization of H. This too is a basis independent concept.

Now consider an arbitrary orthonormal basis B for H. This will have d ≡ d1d2 elements
βi, i = 1, 2, . . . , d . The question we ask now is, how many of these are separable relative to
the factorization

(
H(d1)

1 ,H(d2)

2

)
of H and how many are entangled? If q of the βi are separable

and p = d − q are entangled, that is, not separable relative to
(
H(d1)

1 ,H(d2)

2

)
, then we shall

say that B is of type (p, q). If q = d then B is a completely separable basis relative to the
factorization

(
H(d1)

1 ,H(d2)

2

)
and if p = d then B is a completely entangled basis relative to this

factorization. Otherwise, B is a partially separable (or partially entangled) basis relative to
the factorization

(
H(d1)

1 ,H(d2)
2

)
.

If in such a bi-partite factorization, each of the factor spaces H(d1)
1 ,H(d2)

2 could in principle
be factorizable into two or more factors, then this would lead to a natural extension of this sort
of classification of bases, which is left to the reader to explore.

We now discuss an example which suggests that not every type of partially factorizable
basis exists. This example is a two-qubit system, so that d = 4, and H has the primordial
factorization

H = H(2)

1 ⊗ H(2)

2 (17)

where the H(2)
i , i = 1, 2 are individual two-dimensional qubit Hilbert spaces. Without loss

of generality, we shall work with a specific choice of basis for each factor Hilbert space.
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For qubit i, {|0〉i , |1〉i : i = 1, 2} is an orthonormal basis for H(2)
i . Then we define

|ij 〉 ≡ |i〉1 ⊗ |j 〉2 0 � i, j � 1. (18)

We shall give examples of type (0, 4), (2, 2), (3, 1) and (4, 0) bases for H, and then a
proof that type (1, 3) does not exist.

Type (0, 4). With the above notation, a completely factorizable basis, that is, a type (0, 4)

basis B0,4 is given by

B0,4 = {|00〉, |01〉, |10〉, |11〉}. (19)

Type (2, 2). With the same notation as above, a type (2, 2) basis for H is given by

B2,2 =
{
|00〉, |11〉, 1√

2
(|01〉 + |10〉), 1√

2
(|01〉 − |10〉)

}
. (20)

Type (3, 1). Relative to the basis B0,4 given above, a type (3, 1) orthonormal basis for H is
given by

B3,1 =
{
|00〉, 1√

2
|11〉 + 1

2
|01〉 + 1

2
|10〉, 1√

2
|11〉 − 1

2
|01〉 − 1

2
|10〉, 1√

2
{|01〉 − |10〉}

}
. (21)

Type (4, 0). Relative to the basis B0,4 given above, a type (4, 0) orthonormal basis for H is
given by

B4,0 =
{

1√
2
{|00〉 + |11〉}, 1√

2
{|00〉 − |11〉}, 1√

2
{|01〉 + |10〉}, 1√

2
{|01〉 − |10〉}

}
. (22)

The existence of type (3, 1) partially factorizable bases makes it surprising that no type
(1, 3) basis can exist. Although intuitively obvious, a proof is surprisingly long:

Theorem. No type (1, 3) basis of a two-qubit Hilbert space exists relative to the primordial
factorization.

Proof. Let η1, η2 and η3 be three mutually orthogonal vectors which are separable relative to
the primordial factorization H ≡ H(2)

1 ⊗ H(2)
2 of a two-qubit Hilbert space H. By definition

these vectors are of the form

ηi = ψi ⊗ φi i = 1, 2, 3 (23)

where ψi ∈ H(2)
1 and φi ∈ H(2)

2 . None of the factor vectors ψi, φi can be zero, since we require

(ηi, ηi) = (ψi, ψi)1(φi, φi)2 > 0 i = 1, 2, 3 (24)

where subscripts on inner products refer to the corresponding factor space.
Mutual orthogonality gives the three conditions

(ψ1, ψ2)1(φ1, φ2)2 = 0

(ψ1, ψ3)1(φ1, φ3)2 = 0 (25)

(ψ2, ψ3)1(φ2, φ3)2 = 0.

Now define Aij ≡ (ψi, ψj )1, Bij ≡ (φi, φj )2 for 1 � i < j � 3. First, we show that not
all three of the Aij can be zero. Suppose this were true. Then

A12 = 0 ⇒ (ψ1, ψ2)1 = 0. (26)
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Since none of the ψi can be zero and since H(2)
1 is two dimensional, we deduce that ψ1 and

ψ2 form an orthogonal basis for H(2)
1 . Hence we may write

ψ3 = aψ1 + bψ2 |a|2 + |b|2 > 0. (27)

Then

A13 = 0 ⇒ a = 0
(28)

A23 = 0 ⇒ b = 0

which contradicts (27). Likewise, not all the Bij can be zero.
Without loss of generality, the only way to satisfy the mutual orthogonality conditions

(25) is to have A12 = A13 = B23 = 0 and A23 �= 0. (By symmetry, any other choice of the
Aij , Bjk would be just as good.)

With these conditions assumed, we use the condition A12 = 0 as before to deduce
condition (27). The condition A13 = 0 gives a = 0 and so we deduce b �= 0.

Similarly, B23 = 0 implies that φ2 and φ3 form an orthogonal basis for H(2)
2 , and therefore

we may write

φ1 = cφ2 + dφ3 |c|2 + |d|2 > 0. (29)

Hence we may write

η1 = ψ1 ⊗ (cφ2 + dφ3)

η2 = ψ2 ⊗ φ2 (30)

η3 = bψ2 ⊗ φ3.

With these results we see for example that a completely factorizable orthogonal basis, i.e.
a type (0, 4) basis, for H is given by

B0,4 = {ψ1 ⊗ φ2, ψ1 ⊗ φ3, ψ2 ⊗ φ2, ψ2 ⊗ φ3}. (31)

Now consider a non-zero vector η4. This may be written in the form

η4 = αψ1 ⊗ φ2 + βψ1 ⊗ φ3 + γψ2 ⊗ φ2 + δψ2 ⊗ φ3 (32)

with

|α|2 + |β|2 + |γ |2 + |δ|2 > 0. (33)

If the ηi form an orthogonal, type (1, 3) basis then we must have

(η1, η4) = (η2, η4) = (η3, η4) = 0 (34)

plus the micro-singularity condition discussed above that η4 is entangled relative to the
primordial basis, i.e.

C4 ≡ αδ − βγ �= 0. (35)

The orthogonality conditions give

(η2, η4) = 0 ⇒ γ = 0
(36)

(η3, η4) = 0 ⇒ δ = 0.

This gives

C4 = 0 (37)

however, which is inconsistent with (35), and hence the theorem is proved. �

The above discussion of bases has some implications concerning operators. If Â is any
Hermitian operator on H with non-degenerate eigenvalues then there is a unique orthonormal
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basis BA for H formed from the normalized eigenvectors ψα of Â [11]. Suppose that H is
factorizable with bi-partite factorization

H = H(d1)
1 ⊗ H(d2)

2 , d1, d2 > 1 (38)

Then BA will be of type (r, s) relative to this factorization, where r + s = d1d2, for some
non-negative integers r and s. For any orthonormal basis for H, such a classification is unique,
and therefore we conclude that any non-degenerate Hermitian operator on H can be assigned
a unique classification (r, s) relative to a given factorization of H.

A conclusion from our results above is that there are no type (1, 3) Hermitian operators
acting on elements of a two-qubit system.

If a Hermitian operator Â has two or more degenerate eigenvalues then there is no
uniqueness in the construction of an orthonormal basis from its eigenvectors. In such a case,
more Hermitian operators B̂, Ĉ, . . . , commuting with Â and with each other need to be found
in order to form a complete commuting set [11] S ≡ {Â, B̂, Ĉ, . . .}. A complete commuting
set then gives a unique orthonormal basis BS for H, which will be of unique type (r, s) relative
to the factorization (38). Hence we can classify S as being of type (r, s) relative to the
factorization (38) of the Hilbert space. This will be an important classification in physical
situations involving physically identifiable factor spaces, such as qubit registers in quantum
computers.

7. Concluding remarks

It has been observed by various researchers that even low-dimensional systems such as
the two-qubit system still give surprises. We have found this to be the case in our
investigation of factorizability of bases. Preliminary investigations have suggested that in
more complicated systems, such as a bi-partite system of the form H ≡ H(3)

1 ⊗ H(2)

2 , the
investigation of factorizability of bases becomes harder rapidly because of an increased
number of combinatorial possibilities. It is not clear at this stage for example whether the
non-existence of any type (1, 3) basis or operator in the two-qubit case has analogues in higher
dimensional systems. We have not to date found any type (1, 5) basis for H ≡ H(3)

1 ⊗ H(2)
2 .

A proof that one does not exist has not been found yet, although it appears intuitively obvious.
Essentially, the single entangled basis element η in such a basis type would be of the form
η = ψ1 ⊗ φ1 + ψ2 ⊗ φ2 + . . . , in obvious notation, such that (ψ1, ψ2)1 = 0, etc, but because
η has to be orthogonal to the subspace spanned by the five mutually orthogonal and separable
basis vectors η1, η2, . . . , η5, there is simply no ‘space’ for such an η to exist. From another
point of view, it can be seen that although any single vector in a Hilbert space defines a one-
dimensional subspace, even when it is entangled, the property of entanglement itself requires
at least two dimensions for its operational definition. This argument leads us to conjecture
that in general, there is no type (1, d1d2 − 1) basis for H ≡ H(d1)

1 ⊗ H(d2)

2 .
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